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Problem 1 - Bernoulli data with a Beta prior

Let 𝑦1, ..., 𝑦𝑛|𝜃 ∼ Bern(𝜃), and assume that you have obtained a sample with 𝑠 = 14 successes
in 𝑛 = 20 trials. Assume a Beta(𝛼0, 𝛽0) prior for 𝜃 and let 𝛼0 = 𝛽0 = 2.

Problem 1a)

Draw random numbers from the posterior 𝜃|𝑦 ∼ Beta(𝛼0+𝑠, 𝛽0+𝑓), where 𝑦 = (𝑦1, … , 𝑦𝑛), and
verify graphically that the Monte Carlo (MC) estimates of the posterior mean and standard
deviation converges to the true values as the number of random draws grows large.

Problem 1b)

Use simulation (nDraws = 10000) to compute the posterior probability Pr(𝜃 < 0.5|𝑦) and
compare with the exact value [hint: pbeta()].

Problem 1c)

Compute the posterior distribution of the log-odds 𝜙 = log ( 𝜃
1−𝜃) by simulation.
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Problem 2 - Modeling stock returns with a student-t distribution

The vector returns in the dataset ericsson (load the data with load(ericsson.RData))
contains 252 observations on daily percentage returns on the Ericsson stock. In this exercise
we analyze the standardized returns:

load("ericsson.RData") # Place the data file in the same directory as your Quarto file.
x = (returns - mean(returns)) / sd(returns) # standardized returns

Always a good idea to plot the data before the analysis:

hist(x, 30, freq = FALSE, xlab = "daily returns (standardized)", ylab = "density",
col = prettycols[5])
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The heavy tails with occasional extreme returns are evident from the histogram. Let 𝑋𝑖 be the
standardized returns on the 𝑖th day. We will here use the heavy-tailed student-𝑡 distribution,
𝑡(𝜇 = 0, 𝜎2 = 1, 𝜈), to model the returns, and we will for simplicity assume that the returns are
independent. Note that the location is zero and the variance one, since we have standardized
the data. The only unknown parameter is the degrees of freedom 𝜈 > 0 which models the
tails (smaller 𝜈 gives heavier tails); note that 𝜈 has to be positive, but does not need to be an
integer. In summary, we assume the following model for the standardized Ericsson daily stock
returns

𝑋1, … , 𝑋𝑛|𝜈 iid∼ 𝑡(0, 1, 𝜈)
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Problem 2a)

Plot the log-likelihood function for 𝜈 based on the 252 data observations. Note that the dt
function in R gives the density for the standard 𝑡(0, 1, 𝜈) distribution, and that R uses df for
the degrees of freedom parameter 𝜈. From the graph, what would you say is the maximum
likelihood estimate of 𝜈 ?

Problem 2b)

Plot the likelihood function 𝑝(𝑥1, … , 𝑥𝑛|𝜈) for 𝜈. Compare 𝑝(𝑥1, … , 𝑥𝑛|𝜈 = 1) and
𝑝(𝑥1, … , 𝑥𝑛|𝜈 = 10), what do you conclude from this comparison?

Problem 2c)

Plot the logarithm of the posterior distribution for 𝜈

log 𝑝(𝜈|𝑥1, … , 𝑥𝑛) ∝ log 𝑝(𝑥1, … , 𝑥𝑛|𝜈) + log 𝑝(𝜈)

where 𝑝(𝜈) is density of the prior 𝜈 ∼ Expon(0.25) in the rate parametrization (i.e. 𝔼(𝜈) = 4
a priori). [hint: the posterior distribution is not a known distribution, so you have to plot the
log-posterior over a grid of values for 𝜈).

Problem 2d)

Plot the posterior distribution of 𝜈. [hint: don’t forget to normalize numerically so that the
posterior is true density].
Overlay the prior density [hint: lines() adds lines to existing plot)

Problem 2e)

Compute the posterior mean of 𝜈 using numerical integration.

Problem 3 - Making decisions

You are the manager of a small fruit shop that sells a particular exclusive mango fruit. You
buy each mango for $10 and sell them for $20. One reason for the large mark-up is that some
of the mango may go unsold, and must then be used for mango smoothies which only brings
in $3 per mango, i.e. a loss of $7 on each mango that goes unsold. Each week you must decide
on how many mangoes to bring into the shop, and the demand is uncertain.
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Problem 3a)

Let 𝑋𝑖 be the demand for the mango on the 𝑖th week, and assume the model

𝑋1, … , 𝑋𝑛|𝜃 iid∼ Poisson(𝜃)

where 𝜃 is the mean demand, and 𝜃 ∼ Gamma(𝛼 = 7, 𝛽 = 2) a priori. The manager has
collected data on the number of sold mangoes in the previous ten weeks: x = c(3, 5, 4,
3, 6, 8, 6, 1, 14, 3). Simulate 10000 draws from the posterior 𝑝(𝜃|𝑥1, … , 𝑥10) and plot a
histogram to represent the posterior density. Use the posterior draws to compute the posterior
probability Pr(𝜃 > 8|𝑥1, … , 𝑥10). Compare with the exact result using the pgamma function.

Problem 3b)

The predictive distribution for the next week’s demand, 𝑋𝑛+1, can be shown to follow a
negative binomial distribution (see Chapter 6 in the Bayesian Learning book)

𝑋𝑛+1|𝑥1, … , 𝑥𝑛 ∼ NegBin(𝛼 +
𝑛

∑
𝑖=1

𝑥𝑖,
𝛽 + 𝑛

𝛽 + 𝑛 + 1)

where NegBin(𝑟, 𝜃) is the negative binomial distribution with support 𝑥 ∈ {0, 1, 2, …}. The
rnbinom, dnbinom and pnbinom functions in R implements the negative binomial distribution.
Note that the first argument 𝑟 is called size in R, and the second argument 𝜃 is called prob.
Simulate 10000 draws from the predictive distribution and plot the distribution. Use the
predictive draws to compute the predictive probability that at least 8 mangoes are sold next
week. Compare with the exact result using the pnbinom function.

Problem 3c)

You need to decide on how many mangoes to order for the coming week (week 11). Call this
action 𝑎11. Make this choice based on maximizing posterior expected utility (or predictive
expected utility, since the uncertain demand is in the future). Use profit as the utility:

• The profit from the sold mangoes is 10 ⋅min(𝑋11, 𝑎11) (we cannot sell more than we have
in stock)

• the loss from the unsold mangoes is −7 ⋅ max(0, 𝑎11 − 𝑋11) (we loose $7 on each mango
left at the end of the week).
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So, the utility is

𝑈(𝑋11, 𝑎11) = 10 ⋅ min(𝑋11, 𝑎11) − 7 ⋅ max(0, 𝑎11 − 𝑋11)

Use simulation to find the optimal number of mangoes to buy for week 11. [hint: re-use the
same predictive draws for all values of 𝑎11. Maybe the sapply function can be useful, but it
is not strictly necessary].

Problem 4 - Polynomial regression

The dataset tempLinkoping in the package SUdatasets contains daily temperatures (in Cel-
cius degrees) at Malmslätt, Linköping over the course of the year 2016 (366 days since 2016
was a leap year). The response variable is temp and the covariate is

time = the number of days since beginning of year
366

Your task is to perform a Bayesian analysis of a quadratic regression

temp = 𝛽0 + 𝛽1 ⋅ time + 𝛽2 ⋅ time2 + 𝜀, 𝜀 iid∼ 𝑁(0, 𝜎2)

You can access the data from Github as follows

#install.packages("remotes") # Uncomment this the first time
library(remotes)
#install_github("StatisticsSU/SUdatasets") # Uncomment this the first time
library(SUdatasets)
head(tempLinkoping)

time temp
1 0.002732240 0.1
2 0.005464481 -4.5
3 0.008196721 -6.3
4 0.010928962 -9.6
5 0.013661202 -9.9
6 0.016393443 -17.1
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Problem 4a) Determine a suitable prior distribution

Use the conjugate prior

𝛽|𝜎2 ∼ 𝑁(𝜇0, 𝜎2Ω−1
0 )

𝜎2 ∼ inv−𝜒2(𝜈0, 𝜎2
0)

You need to determine suitable prior hyperparameters 𝜇0, Ω0, 𝜎2
0 and 𝜈0. Start with 𝜇0 =

(−10, 100, −100)⊤, Ω0 = 0.01 ⋅ 𝐼3, where 𝐼3 is the 3 × 3 identity matrix, 𝜈0 = 3 and 𝜎2
0 = 1.

Check if this prior agrees with your prior opinions by simulating draws from the joint prior
of all parameters and for every draw compute the regression curve. This gives a collection of
regression curves, one for each draw from the prior. Do the collection of curves look reasonable?
If not, change the prior hyperparameters until the results agree with your prior beliefs about
the regression curve. The mvtnorm package contains the multivariate normal distribution, and
here is an implementation of a random number generator for the inv−𝜒2(𝜈0, 𝜎2

0) distribution:

# Simulator for the scaled inverse Chi-square distribution
rScaledInvChi2 <- function(n, v_0, sigma2_0){
return((v_0*sigma2_0)/rchisq(n, df = v_0))

}

Problem 4b) Simulating from the posterior

Write a program that simulates from the joint posterior distribution of 𝛽0, 𝛽1,𝛽2 and 𝜎2. Plot
the marginal posteriors for each parameter as a histogram. Also produce another figure with
a scatter plot of the temperature data and overlay a curve for the posterior median of the
regression function 𝑓(𝑡𝑖𝑚𝑒) = 𝛽0 + 𝛽1 ⋅ 𝑡𝑖𝑚𝑒 + 𝛽2 ⋅ 𝑡𝑖𝑚𝑒2, computed for every value of 𝑡𝑖𝑚𝑒.
Also overlay curves for the lower 2.5% and upper 97.5% posterior credible interval for 𝑓(𝑡𝑖𝑚𝑒).
That is, compute the 95% equal tail posterior probability intervals for every value of 𝑡𝑖𝑚𝑒 and
then connect the lower and upper limits of the interval by curves. Does the interval bands
contain most of the data points? Should they?

Problem 4c) Locating the day with the highest expected temperature

It is of interest to locate the 𝑡𝑖𝑚𝑒 with the highest expected temperature (that is, the 𝑡𝑖𝑚𝑒
where 𝑓(𝑡𝑖𝑚𝑒) is maximal). Let’s call this value ̃𝑥. Use the simulations in b) to simulate from
the posterior distribution of ̃𝑥. [Hint: since the regression curve is a quadratic, the maximum
on the curve is given by ̃𝑥 = − 𝛽1

2𝛽2
]
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