
Bayesian Learning, 7.5 hp
Home assignment - Part B

Mattias Villani

2025-10-02

Table of contents

Problem 5 - Normal posterior approximation . . . . . . . . . . . . . . . . . . . . . . 1
Problem 6 - Posterior sampling with the Metropolis-Hastings algorithm . . . . . . . 3
Problem 7 - Posterior sampling with the HMC algorithm in Stan . . . . . . . . . . . 5

Note

This is the second part of the home assignment for the course. The first part had Problems
1-4, so this second part will continue with this numbering, and the first problem here will
therefore be Problem 5.

Tip

It is strongly advised to study the notebook for the logistic regression applied to the
Titanic data before embarking on this assignment. This notebook is here: html | quarto.

Problem 5 - Normal posterior approximation

The file bugs.csv contains a dataset with the number of bugs (nBugs) and some other explana-
tory variables for 𝑛 = 91 releases of several software projects. We will use Poisson regression
to the model the number of bugs as a function of the following covariates/features:

• intercept - this is columns of ones to model the intercept

• nCommit - the number of commits since the last release of the software

• propC - proportion of C/C++ code in the project

1

https://mattiasvillani.com/BayesianLearningBook/notebooks/TitanicLogistic/TitanicLogistic.html
https://github.com/mattiasvillani/BayesianLearningBook/raw/main/notebooks/TitanicLogistic/TitanicLogistic.qmd


• propJava - proportion of Java code in the project

• complexity - a measure of code complexity that takes into account the frequency of if
statements etc.

This code sets up the vector of response observations (y) and the 91 × 5 matrix of covariates
X

data = read.csv("https://github.com/mattiasvillani/BayesLearnCourse/raw/master/assignment/bugs.csv",
header = TRUE)

y = data$nBugs # response variable: the number of bugs, a vector with n = 91 observations
X = data[,-1] # 91 x 5 matrix with covariates
X = as.matrix(X) # X was initially a data frame, but we want it to be matrix
head(X)

intercept nCommits propC propJava complexity
[1,] 1 5 0.3191181 0.2307104 0.6050054
[2,] 1 4 0.4150649 0.3295860 0.7031914
[3,] 1 13 0.2532424 0.2821941 0.7550588
[4,] 1 1 0.4901135 0.2260926 0.2207819
[5,] 1 10 0.1888998 0.3671323 0.8765245
[6,] 1 7 0.3914173 0.3340347 0.8076927

We first consider the Poisson regression model

𝑌𝑖|𝑥𝑖
ind∼ Poisson(𝜆𝑖 = exp (𝑥⊤

𝑖 𝛽))

Note how each observation (software release) has its “own” 𝜆𝑖 parameter, which is modeled
as the exponential of 𝑥⊤

𝑖 𝛽. The exponential function is used to make sure that 𝜆𝑖 is always
positive, as it has to be in the Poisson model.

We ignore here that some of the observations actually come from the same project at different
releases, and assume that the response observations 𝑌𝑖 are independent, given the features.

The covariates/features for the 𝑖th observation 𝑥𝑖 = (𝑥1,𝑖, … , 𝑥𝑝,𝑖)⊤ is the 𝑖th row of the matrix
X . For example, for the second observation we have y[2] = 6, so six bugs in the second release,
and the covariate values for this second release are:

X[2,]

intercept nCommits propC propJava complexity
1.0000000 4.0000000 0.4150649 0.3295860 0.7031914

2



That is, this release (observation) has 4 commits, approximately 41.4% C code, 32.9 % Java
code and a Code Complexity of 0.7.

Problem 5a)

Compute a (multivariate) normal approximation of the joint posterior distribution for the
vector of Poisson regression coefficients 𝛽. Use the prior 𝛽 ∼ 𝑁(0, 𝜏2𝐼𝑝) where 𝐼𝑝 is the
𝑝 × 𝑝 identity matrix (obtained in R by diag(5) when 𝑝 = 5). Set 𝜏 = 10 to get a fairly
non-informative prior. The library mvtnorm contains the multivariate normal density function
dmvnorm.

Problem 5b)

Plot the (approximate) marginal posterior distribution of each 𝛽𝑗 for 𝑗 = 1, … , 5. Summarize
each marginal posterior by a 95% interval (you are free to choose the type of interval). As a
sort of Bayesian “significance” test, check if the value 𝛽𝑗 = 0 is included in the interval for
𝑗 = 1, … , 5.

Important

Note that this significance is not the usual frequentist interpretation. There are other
Bayesian ways to assess “significance”, for example by computing Bayes factors or using
Bayesian variable selection. However, the simple version here based on credible intervals is
often a more robust choice. In particular, the credible interval approach is less dependent
on the prior for 𝛽, whereas Bayes factors are known to be very sensitive to the choice of
prior and its prior hyperparameters.

Problem 6 - Posterior sampling with the Metropolis-Hastings algorithm

Problem 6a)

Write a function RWMsampler that implements the Random Walk Metropolis algorithm
from Chapter 10 in the Bayesian Learning book. The RWMsampler function should have signa-
ture

RWMsampler <- function(logPostFunc, initVal, nSim, nBurn, Sigma, c, ...){
# Run the algorithm for nSim iterations
# using the multivariate proposal N(theta_previous_draw, c*Sigma)
# Return the posterior draws after discarding nBurn iterations as burn-in

}

3



where nSim is the number of draws after the nBurn burn-in draws. logPostFunc is a function
object that computes the log posterior in proportional form and the final triple dot argument
… catches all additional arguments (data and the prior hyperparameters) needed to evaluate
the logPostFunc function. See the document How to code up a general Metropolis sampler
in R for details on all of this.

Caution

The mvtnorm package contains a random number generator rmvnorm for the multivariate
normal distribution. The output of that function is an 𝑛 × 𝑝 matrix where each row is
draw of the 𝑝-dimensional multivariate normal vector. So when used to generate a single
draw 𝑛 = 1, the output is 1×𝑝 matrix, not a vector (in R’s sense). Use the as.vector()
function to convert that 1 × 𝑝 matrix into a vector.

Problem 6b)

Use the RWM sampler from Problem 6a) to sample from the posterior of the Poisson regression
model in Problem 5a). Set the proposal covariance matrix Σ equal to the posterior covariance
matrix from the Normal approximation in Problem 5) and the RWM scaling constant to 𝑐 = 0.5.
Use nSim = 5000 and nBurn = 1000. Use the zero vector as initial value for the algorithm.
Plot histograms of the posterior draws to represent the marginal posterior densities.

Problem 6c)

Check if the posterior samples from MCMC seems to have converged to the true posterior
by:

1. Plot the MCMC trajectories (draws over the MCMC iterations) for all parameters.

2. Plot the cumulative estimates of the posterior mean for the parameters based on
increasing number of draws.

3. Re-run the sampler a second time, this time starting from the unit vector (1, 1, 1, 1, 1),
and compare the posterior mean estimates from the two runs.

Problem 6d)

Re-run the RWM algorithm, this time using Σ = 𝐼𝑝 and with 𝑐 = 1 (again using the zero
vector as initial value). Is the mixing of the MCMC chain better or worse, compared to the
samples obtained in Problem 6b)? Why?

4

HowToCodeRWM.qmd
HowToCodeRWM.qmd


Problem 7 - Posterior sampling with the HMC algorithm in Stan

Note

This exercise uses Probabilistic programming in the Stan language. You need to use the
rstan and loo packages. If you run into troubles installing rstan on your own computer,
consult the Getting started with Rstan guide.

Important

rstan compiles your model the first time you define it. This takes some time. To avoid
re-compilation every time you use the model, and to use all available cores on your
computer, add the following settings in the beginning of your stan code:

library(rstan)
library(loo)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

Problem 7a)

Sample 1000 draws from the posterior distribution of 𝛽 in the Poisson regression from Problem
5), but this time using the Hamiltonian Monte Carlo algorithm in the rstan package.

Tip

Stan includes a special function poisson_log that implements the Poisson distribution
with a so called log link. This is the same as a Poisson distribution with 𝜆 = exp(𝜃), so
that the exponential function (which is the inverse function to the log function) is built-in
from the start. Read this: StanUserGuide - Poisson regression.

Problem 7b)

The upcoming release, has the following covariate vector:

xNew = c(1, 10, 0.45, 0.5, 0.89)

So, the release is based on 10 commits, good proportions of C and Java code and a high code
complexity of 0.89. Use Stan to simulate from the predictive distribution of the number of
bugs in this release.

5

https://github.com/stan-dev/rstan/wiki/Rstan-Getting-Started
https://mc-stan.org/docs/2_28/functions-reference/poisson-log-glm.html
https://mc-stan.org/docs/functions-reference/unbounded_discrete_distributions.html#poisson-log-glm
https://mc-stan.org/docs/2_28/functions-reference/poisson-log-glm.html


Tip

Add a generated quantities section to your Stan model to produce the predictive
distribution, see Stan User Guide - Prediction.

Problem 7c)

Consider the negative binomial regression for the same bugs data:

𝑌𝑖|𝑥𝑖
ind∼ NegBin(𝑟, 𝜇𝑖 = exp (𝑥⊤

𝑖 𝛽))

Note

We are here using the parameterization of the negative binomial distribution where the
second parameter is the mean; this corresponds to using the mean argument in
dnbinom function in plain R. In Stan, this distribution (again, with the log link built-in)
is called neg_binomial_2_log, see Stan User Guide - negative binomial regression.

The parameters in this model are therefore the vector of negative binomial regression coeffi-
cients 𝛽 and the scalar parameter 𝑟 > 0 . Use HMC in Stan to sample 1000 draws from joint
posterior 𝑝(𝛽, 𝑟|𝑦, 𝑋). Plot the marginal posterior for 𝑟. What does this posterior tell you
about the suitability of the Poisson regression model in 7a)?

Problem 7d)

Compare the Poisson regression and Negative binomial regression models using Bayesian
leave-one-out (LOO) cross-validation. Use the posterior samples from rstan and the loo
package to compute the expected log predictive density from leave-one-out cross-validation
(ELPD-LOO) for each model. Which model is preferred?

Note

Computing the ELPD-LOO from the Stan output requires that we tell Stan to store the
log-likelihood values for each HMC draw. Similar to prediction, we achieve this by adding
the log-likelihood computation to the generated quantities section. See the Writing
Stan programs for use with the loo package.

6

https://mc-stan.org/docs/stan-users-guide/regression.html#prediction-forecasting-and-backcasting
https://mc-stan.org/docs/functions-reference/unbounded_discrete_distributions.html#neg-binom-2-log
https://mc-stan.org/loo/articles/loo2-with-rstan.html
https://mc-stan.org/loo/articles/loo2-with-rstan.html

	Problem 5 - Normal posterior approximation
	Problem 6 - Posterior sampling with the Metropolis-Hastings algorithm
	Problem 7 - Posterior sampling with the HMC algorithm in Stan

