Stan

Mattias Villani

Introduction

Stan is a probabilistic programming language. This basically means that it is a language for
performing statistical inference using a convenient model syntax where all the inference and
prediction machinery is handled by the language. Stan is mostly used for Bayesian inference
either by

 simulating from the posterior distribution using Hamiltonian Monte Carlo (HMC)
or

o approximating the posterior distribution using variational inference (VI) methods.

Stan can also be used to obtain maximum likelihood estimates by optimization on a posterior
with a uniform prior distribution on the parameters.

The backbone of both the HMC and VI methods is efficient automatic differentiation to au-
tomagically compute gradients, which makes it possible for the user to only specify the model
and let Stan take care of all the rest.

The user expresses the model and prior in a special Stan syntax, which is then parsed to C++
and eventually compiled to machine code.

We can install R package rstan as any other package (use the options below for using all cores
and avoiding re-compilation when not needed:

#install.packages("rstan)
library(rstan)

Loading required package: StanHeaders

rstan version 2.32.7 (Stan version 2.32.2)

For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

For within-chain threading using “reduce_sum()” or “map_rect()” Stan functions,
change “threads_per_chain™ option:

rstan_options(threads_per_chain = 1)

options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

Stan model syntax

Stan will take care of the posterior sampling, but clearly needs to know about all aspects of
the model, data and prior. Stan has a special syntax for defining the statistical model and its
parameters. The Stan parser then translates the model into C++ code which is ultimately
compiled to fast machine code. The model definition can be written either as a separate Stan
file, or as a simple string which is then passed to the parser.

All variables used in the Stan program needs to have defined types. Stan needs to know if
a variable is integer (whole number), real number, vector or a matrix. It also needs to know
about any restrictions on the parameters, so that the HMC algorithm does not propose invalid
parameter values. For example,

e a parameter declared as real<lower=0> means that the parameters is a continuous
positive number (so called floats).

e int<lower=0, upper=1> is a integer restricted between 0 and 1, that is, it is a binary
variable that can only take on the values 0 and 1.

e The syntax vector[n] is a vector with n real numbers.

Note that the default type of the elements in a vector is a real numbers, so that when we do
not specify the type the numbers are assumed to be real.

1 Data includes also prior hyperparameters

e Stan’s use of the term data is a little different from the usual terminology: data
includes the actual data, but also all prior hyperparameters.

The iid normal model in Stan

Let us consider the simple iid normal model

Xy, ..., X,00,02 % N(6,02)
with conjugate prior

2

% ~ N(uo, 0—)
ko

02 ~ Inv—x?(vy,03)
The Stan model syntax, here expressed as string named iidnormal :
iidnormal = '

// data and prior hyperparameters
data {
// data
int<lower=0> n;
vector[n] y;
// prior
real muO;
real<lower=0> kappaO;
real<lower=0> nu0;
real<lower=0> sigma20;

// specify which are the model parameters
parameters {

real theta;

real<lower=0> sigma2;

// the model connects parameters to the data

model {
sigma2 ~ scaled_inv_chi_square(nu0, sqrt(sigma20));
theta ~ normal(muO, sqrt(sigma2/kappa0));
y ~ normal (theta, sqrt(sigma2));

}

1 Stan code is not R code

The above code is not R code. It is Stan’s special syntax that will be parsed to something
useful for HMC to work on.

Note how the above code has three sections enclosed by angle brackets {}:

e data - this is where all the data used by model is defined. Recall that also values for
the prior hyperparameters is considered data in Stan. We see that the data will be a
vector y with N elements. The four hyperparameters in the prior are specified, where we
for example see that k is positive real parameter.

e parameters - this specifies the parameters of the model. The HMC sampler will sample
from the joint posterior of all the parameters listed here. The iid normal model has only
two parameters 6 and o2, both a real and o2 has to be positive.

e model - this is the part that defines the prior and model, using data and parameters
defined in the previous two sections. Stan has a large number of pre-defined statisti-
cal distributions, including scaled_inv_chi_square for the Inv—y? distribution, and
a normal distribution; note that the normal distributions is defined using the standard
deviation, not the variance (as in R). Finally, the last line of the model definition section
y ~ normal(theta, sqrt(sigma2)) uses a short-hand syntax where Stan will under-
stand that the elements of the data vector y are #id from a normal distribution with mean
theta and standard deviation sqrt(sigma2). Alternatively, this part can be written as
loop:

model {
sigma2 ~ scaled_inv_chi_square(nuO, sqrt(sigma20));
theta ~ normal (muO, sqrt(sigma2/kappa0));
for (i in 1:n){
y[i] ~ normal(theta, sqrt(sigma2));
}
}

[]
1 Stan comments

Any line starting with // is a comment and is ignored by the Stan parser.

Now that the model is defined, let us set up the data and prior hyperparameters. Here we
analyze the internet speed data from Chapter 2 in the Bayesian Learning book:

Set up the data
data <- list(n = 5, y = c(15.77, 20.5, 8.26, 14.37, 21.09))

Set up prior
prior <- list(mu0 = 20, kappaO = 1, nu0 = 5, sigma20 = 572)

The code above is plain R code and will run in R.

Now, finally we throw the model definition, data and prior hyperparameters to the stan
function to sample from the posterior. Note that I pack together the data and prior list in
the data argument to the stan function. We could have define these together from the start,
but it is cleaner to separate data and prior hyperparameters like I have done here. I have
four cores on this computer so Stan will run four runs in parallel, each with iter = 1000
iterations and different initial values. Each such run is referred to as a chain in Stan. Have
multiple runs is useful for diagnosing convergence: the draws from different runs should give
rather similar posteriors (for example histograms). The argument refresh = 0 makes Stan
print less to the screen while running HMC.

fit = stan(model_code = iidnormal, data = c(data, prior), iter = 1000, refresh

We can now summarize the posterior, for example by using Stan’s built-in summary function:

summary (fit, pars = c("theta", "sigma2"))$summary

mean se_mean sd 2.5% 25% 50% 75%
theta 16.60276 0.07924383 2.364804 11.23232 15.20144 16.69949 18.08297
sigma2 30.58909 0.56191308 17.215425 12.53654 19.36103 26.12858 37.43301
97.5% n_eff Rhat
theta 21.09984 890.5523 1.000378
sigma2 71.96001 938.6360 1.003438

We could have just written summary(fit), which would return a summary for all parameters
and for all four chains/runs. By only printing out the summary element (hence the $summary
at the end) we get a more compact summary that merges the draws from all four chains.

The output has several columns:

e mean is the posterior mean

0)

e se_mean is the Monte Carlo standard error of the posterior mean estimate in the first
column. This can be used, via the central limit theorem, to state that a 95% frequentist
confidence interval for the posterior mean estimate is 16.67+1.96-0.076 = (16.521, 16.819)
(the numbers may not exactly the ones in the table above due to randomness across runs).
This standard error and the confidence interval has nothing to do with the posterior
standard deviation. The se_mean is purely a numerical standard deviation telling us
how precisely HMC can estimate the posterior mean.

e sd - this is the posterior standard deviation.
e the columns named 2.5%, 25% etc are posterior quantiles.

e n_eff is the number of effective draws in each chain. It is defined as iter/IF, where IF
is the inefficiency factor. We asked for iter=1000 draws, but due to the autocorrelation
of the draws from HMC we only got the equivalent of n_eff 4id draws. For this simple
model, HMC is very efficient: the number of effective draws n_eff is almost the same as
the nominal number of draws iter; we can therefore deduce that IF = 1, and the draws
are close to the ideal 7id case.

e Rhat in the final column is a measure convergence that compares the mean from the
different runs using a so called ANOVA analysis. It looks at all parameters jointly
(i.e. technically Multivariate ANOVA). The ideal case is Rhat=1, and the very rough
rule-of-thumb is that Rhat should be below 1.01 for the sampler to have converged.

We can use Stan’s traceplot function to plot the MCMC trajectories for all parameters and
for each chain (the different colors of the trajectories).

Plot trajectories
traceplot(fit, pars = c("theta", "sigma2"), nrow = 2)

theta

- 'Wy Mw db ") % i l"ﬂ“‘

10 1 chain
> 500 600 700 800 900 1000 ,
sigma2 __ 3
4
2001
100+ b
0 ‘W""hﬁbb i MmN AN ik *&L V‘» MM

500 600 700 800 1000

The sampler is mixing rapidly, there are no clearly trending patterns and the chains seems to
have similar behavior and visiting similar regions over the iterations; convergence seems fine,
as we have already seen with the n_eff and Rhat metrics.

The draws in the fit object can be extracted with the extract function, and the plotted using
your favorite plotting functions in R. Note how I take the square root of the sigma2 draws
and plot the histogram of the posterior standard deviation ¢, which is more interpretable.

extract draws

postDraws = extract(fit, pars = c("theta", "sigma2"), permuted = TRUE)
par (mfrow = c(1,2))

hist(postDraws$theta, 50, freq = TRUE, col = "cornflowerblue",

xlab = expression(theta), ylab = "density", main = expression(theta))
hist(sqrt(postDraws$sigma2), 50, freq = TRUE, col = "cornsilk",
xlab = expression(sigma), ylab = "density", main = expression(sigma))

S - 5_
| s |
2 o 2 -
2§ 2
o - TR
o o | T Q
s}
o - o -
[[[| [T 17T T T T°1
5 10 15 20 4 8 12 16
0 o

Generated quantities and Predictions

There is a fourth section that can be added to a Stan program: generates quantities. Here
we can for example:

o compute functions of the parameters in the parameter section

o generate draws from the predictive distibution

Here is an example using the iid normal model where we directly compute the standard devia-
tion and the coefficient of variation g and generate draws from the predictive distribution:

iidnormal = '

// data and prior hyperparameters
data {
// data
int<lower=0> n;
vector[n] y;
// prior
real muO;
real<lower=0> kappaO;
real<lower=0> nu0;
real<lower=0> sigma20;

// specify which are the model parameters
parameters {

real theta;

real<lower=0> sigma2;

// the model connects parameters to the data
model {
sigma2 ~ scaled_inv_chi_square(nuO, sqrt(sigma20));
theta ~ normal (mu0O, sqrt(sigma2/kappa0));
y ~ normal(theta, sqrt(sigma2));
}
generated quantities {
real<lower=0> sigma = sqrt(sigma2);
real cv = theta/sigma;
real yPred = normal_rng(theta, sigma); // one posterior predictive draw

}

Running the sampler again with the new model defintion (which requires a new compilation):

fit = stan(model_code = iidnormal, data = c(data, prior), iter = 1000, refresh

Model comparison using leave-one-out predictive cross-validation

A natural way compare models is to compare their predictive performance on new data (test
data). The loo package, made by some of Stan developers, can be used to assess the predictive
performance of a model using leave-of-out cross-validation. This means that the model is fitted
to all data points, except one which is left as single piece of test data to evaluate the model
prediction. This is then repeated so that every data point is used exactly once as test data.

Since we are doing Bayesian inference - where we obtain a predictive distribution - we often
want to evaluate the predictive density, not just a point prediction. Let y, be the ith observa-
tion and y_, the rest of the dataset, excluding y;. The predictive density for the i observation
is then

pily_) = / p(@ily_ Op(Oly_)db, fori=1,...,n,

where p(fly ;) is the posterior distribution for the model parameters ¢ given the data y |
without the ith observation. We are here using the tilde (~) notation on y to show that this
is a predicted quantity. If we have iid observations, we can simplify this a bit

0)

pGily_,) = / p(Gi10)p(0ly_)d0, for i =1, ...,

where p(g;|0) is just the model density, or, for discrete data, the probability (mass) function.
When the predictive density p(g;|0) is evaluated at the observed data point y;, we call the
resulting density value, p(y,|0), the density score for the ith observation. A good model
would give high density scores for all (or most) observations in the dataset, i.e. p(y;|0) is large
for all ¢ = 1,...,n. The figure below illustrates several predictive densities and the density
scores at a given test point y = 0.5 (dashed line). The red density has a better score for
the observed y = 0.5 data point than the wide blue density, and much better than the green
density that is over-confident and essentially misses the observed data point and obtains a
very low density score. This shows that a good model should:

¢ have a tightly concentrated predictive density

e .. that is centered close to the observed test data

A model with a very tightly concentrated predictive density far from the observed data will
get a very low density score. But a model that ‘plays it safe’ by having a large variance to be
sure to capture the observed data will also have a low density score since the density will be
rather flat (i.e. low, since a density must integrate to one).

yGrid = seq(-5, 5, length = 1000)
plot(yGrid, dnorm(yGrid, O, 1), col = "indianred", type = "1", lwd = 3,
xlab = "§", ylab = "predictive density", ylim = c(0,0.8))

Warning in title(...): conversion failure on '§' in 'mbcsToSbcs': dot
substituted for <cc>

Warning in title(...): conversion failure on '§' in 'mbcsToSbcs': dot
substituted for <83>

lines(yGrid, dnorm(yGrid, O, 3), col = "steelblue", lwd = 3)

lines(yGrid, dnorm(yGrid, 2, 0.5), col = "darkgreen", lwd = 3)

y = 0.5

abline(v = y, 1ty = 3)

legend ("topleft", legend = c("Normal(0,1)", "Normal(0,372)", "Normal(2,0.572)", "observed y"
col = c("indianred", "steelblue", "darkgreen", "black"))

10

- Normal(0,1)
—| = Normal(0,3"2)
—— Normal(2,0.5"2)
— « -+ observedy

predictive density
0.0 0.2 04 06 08

It is convenient to work on the log scale and compute the log predictive scores: logp(y;|y).
The log predictive density score (LPDS) with leave-one-out (LOO) cross-validation is
just the sum of the log preditive density evaluations over all data points:

LPDS; 00 = Y _logp(y;ly_;)

=1

If we compare K models we prefer the model with largest LPDS; o since that model assigns
highest density to the actually observed data. Note that this measure penalizes model com-
plexity since an over-parameterized model will have a lot of uncertainty in the posterior for
the parameters p(fly) and therefore a predictive density with large variability, resulting in
lower predictive density values for the test data. See the Figure above.

The log predictive density score is called the expected log pointwise predictive density
(elpd) and the LPDS; o is the correspondingly called elpd; .

The leave-one-out predictive densities p(f;|y_,) are typically intractable and needs be approx-
imated numerically. The most common approach is to use a Monte Carlo approximation to
approximate the predictive scores:

1 & j
Pl = [plulo)p(6ly)do ~ > (w16
=1
where 0V, ... 0™ are draws from the leave-one-out posterior p(fly_,). Since we need to

compute p(y;|y_,) for all n observations y;, we to sample from all n leave-one-out posteriors
p(fly_;) for i = 1,...,n. Computing the LPDS;q for a model is therefore computationally
costly since it requires running a posterior sampler like MCMC or HMC n times. Even though
these runs can be done in parallel, it is still a very costly operation. However, the leave-one-out

11

posteriors p(ly_,) for i = 1,...,n are typically all very similar to the posterior based on all
observations p(f|y) and an efficient approach is to use draws from p(f|y) as an importance
density in importance sampling. This only requires a single run of MCMC/HMC to sample
from p(fly). This is implemented in the loo package in an efficient way using a variant of
importance sampling called Pareto smoothed importance sampling (PSIS).

The loo package needs evaluations of the log densities for each observation p(yi|0(j)), for i =
1,...,n, at each posterior parameter draw 0(1), e g , which are not automatically computed

by stan. We can have stan compute this by adding it to the generated quantities section:
iidnormal = '

// data and prior hyperparameters
data {
// data
int<lower=0> n;
vector[n] y;
// prior
real muO;
real<lower=0> kappaO;
real<lower=0> nu0;
real<lower=0> sigma20;

// specify which are the model parameters
parameters {

real theta;

real<lower=0> sigma2;

// the model connects parameters to the data
model {
sigma2 ~ scaled_inv_chi_square(nu0, sqrt(sigma20));
theta ~ normal(muO, sqrt(sigma2/kappa0));
y ~ normal (theta, sqrt(sigma2));
}
generated quantities {
vector[n] log lik;
for (i in 1:n) {
log_lik[i] = normal_1lpdf(y[i] | theta, sqrt(sigma2));
+
}

12

And then we have to run the stan function again to sample from the posterior and compute
the log densities for the observations:

fit = stan(model_code = iidnormal, data = c(data, prior), iter = 1000, refresh = 0)

#install.packages("loo")
library("loo")

This is loo version 2.8.0
- Online documentation and vignettes at mc-stan.org/loo

- As of v2.0.0 loo defaults to 1 core but we recommend using as many as possible. Use the 'c

Attaching package: 'loo'

The following object is masked from 'package:rstan':
loo

log_lik_iidnormal <- extract_log lik(fit, merge_chains = FALSE)
loo_iidnormal <- loo(log_lik_iidnormal)

Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for d.

message ("ELPD-L0O0 for the iid normal model is: ", loo_iidnormal$estimates[1])

ELPD-L0O0 for the iid normal model is: -16.2031257865358

This number does not say much in itself as it depends on the scale of the data, but can be
compared to elpd, ., for other models. The model with highest elpd; . is the best model, at
least in this predictive density sense.

Let us try another model for the data: a student-t distribution ¢(0, 02, v) (which written as
t(v,6,0) in stan), which has heavier tails and can therefore capture outliers better. We use
the same prior for # and 0% and an v ~ Expon(1) for the degrees of freedom v of the student-
distribution. Note that the joint posterior distribution p(6, 02, v|y) is highly intractable, but
Stan doesn’t care, it will happily sample it with HMC anyway! We can copy-paste the code
for the iid normal model can just change a few lines to the student-t distribution:

13

iidstudent = '

// data and prior hyperparameters
data {
// data
int<lower=0> n;
vector[n] y;
// prior
real muO;
real<lower=0> kappaO;
real<lower=0> nu0;
real<lower=0> sigma20;

// specify which are the model parameters
parameters {

real theta;

real<lower=0> sigma2;

real<lower=0> nu;

// the model connects parameters to the data
model {
sigma2 ~ scaled_inv_chi_square(nu0, sqrt(sigma20));
theta ~ normal(muO, sqrt(sigma2/kappa0));
nu ~ exponential(l);
y ~ student_t(nu, theta, sqrt(sigma2));
}
generated quantities {
vector[n] log_lik;
for (i in 1:n) {
log_lik[i] = student_t_lpdf(y[i] | nu, theta, sqrt(sigma2));
}
}

fit_student = stan(model_code = iidstudent, data = c(data, prior), iter = 1000, refresh = 0)

And we again use the loo package to compute the elpd, ., for the student-t model:

14

log_lik_iidstudent <- extract_log lik(fit_student, merge_chains = FALSE)
loo_iidstudent <- loo(log_lik_iidstudent)

message ("ELPD-L0O0 for the iid student-t model is: ", loo_iidstudent$estimates[1])
ELPD-L0O0 for the iid student-t model is: -17.102967677613

Since the elpd, . for the normal model is a little higher than that of the student-t model, the
normal model is preferred for this data, even though it is a special case of the student-t model
with the degrees of freedom v approaching infinity.

15

	Introduction
	Stan model syntax
	The iid normal model in Stan
	Generated quantities and Predictions
	Model comparison using leave-one-out predictive cross-validation

