Bayesian Learning Lecture 1 - The Bayesics, Bernoulli and Normal data

Mattias Villani

Department of Statistics Stockholm University

Course overview

- Course <u>webpage</u>. Course <u>syllabus</u>.
- Modes of teaching:
 - Lectures (Mattias Villani)
 - Mathematical exercises (Oskar Gustafsson)
 - Computer labs to work on Home Assignment (Oskar Gustafsson, Akram Mahmoudi and Valentin Zulj)

■ High-level contents:

- ▶ The Bayesics, single- and multiparameter models
- Regression and Classification models
- ► Advanced models and Posterior Approximation
- Simulation-based inference and Probabilistic programming

Examination

- ► Home assignment, Part A and B.
- ► Exam: Pen and paper + Computer (using R).

 Polished home assignment can be uploaded as pdf.

Lecture overview

■ The likelihood function

Bayesian inference

Bernoulli model

■ The Normal model with known variance

Likelihood function - Bernoulli trials

Bernoulli trials:

$$X_1,...,X_n|\theta \stackrel{iid}{\sim} Bern(\theta).$$

Likelihood from $s = \sum_{i=1}^{n} x_i$ successes and f = n - s failures.

$$p(x_1,...,x_n|\theta) = p(x_1|\theta)\cdots p(x_n|\theta) = \theta^s(1-\theta)^f$$

- **Maximum likelihood estimator** $\hat{\theta}$ maximizes $p(x_1,...,x_n|\theta)$.
- Given the data $x_1,...,x_n$, plot $p(x_1,...,x_n|\theta)$ as a function of θ .

The likelihood function

Say it out loud:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- The symbol $p(x_1,...,x_n|\theta)$ plays two different roles:
- Probability distribution for the data.
 - ▶ The data $\mathbf{x} = (x_1, ..., x_n)$ are random.
 - \triangleright θ is fixed.
- Likelihood function for the parameter
 - ▶ The data $\mathbf{x} = (x_1, ..., x_n)$ are fixed.
 - $ightharpoonup p(x_1,...,x_n|\theta)$ is function of θ .

Probabilities from the likelihood?

Uncertainty and subjective probability

- $\Pr(\theta < 0.6 | \text{data})$ only makes sense if θ is random.
- But θ may be a fixed natural constant?
- **B** Bayesian: doesn't matter if θ is fixed or random.
- **Do You** know the value of θ or not?
- $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- Subjective probability.
- The statement $\Pr(10\text{th decimal of }\pi=9)=0.1$ makes sense.

Bayesian learning

- **Bayesian learning** about a model parameter θ :
 - \triangleright state your prior knowledge as a probability distribution $p(\theta)$.
 - \triangleright collect data and form the likelihood function $p(Data|\theta)$.
 - **combine** prior $p(\theta)$ and data information $p(Data|\theta)$.
- **How to combine** the two sources of information?

Bayes' theorem

Learning from data - Bayes' theorem

- How to update from prior $p(\theta)$ to posterior $p(\theta|Data)$?
- **Bayes' theorem** for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

Bayes' Theorem for a model parameter θ

$$p(\theta|\text{Data}) = \frac{p(\text{Data}|\theta)p(\theta)}{p(\text{Data})}.$$

- It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.
- A probability distribution for θ is extremely useful. **Predictions. Decision making.**
- No prior no posterior no useful inferences no fun.

- \blacksquare A = {Covid}, B ={Positive home test}.
- **Sensitivity**: 96.77%. This is p(B|A) = 0.9677.
- **Specificity**: 99.20%. This is $p(B^c|A^c) = 0.9920$.
- Prevalence: 5%. This is p(A) = 0.05.
- Probability of being sick when test is positive:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)} = \frac{p(B|A)p(A)}{p(B|A)p(A) + p(B|A^c)p(A^c)} \approx 0.864.$$

Probably some symptoms. So maybe $\Pr(A) = 0.7$. Then

$$p(A|B) = 0.9965.$$

Morale: If you want p(A|B) then p(B|A) does not tell the whole story. The prior probability p(A) is also very important.

"You can't enjoy the Bayesian omelette without breaking the Bayesian eggs"

Leonard Jimmie Savage

The normalizing constant is not important

Bayes theorem

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})} = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

- Integral $p(Data) = \int_{\theta} p(Data|\theta)p(\theta)d\theta$ can make you cry.
- **Delta** p(Data) is only a constant to ensure that $\int p(\theta|Data) = 1$.
- Example: $\mathbf{x} \sim \mathbf{N}(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

■ We may write

$$p(x) \propto \exp \left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right].$$

Great theorems make great tattoos

All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

Bernoulli trials - Beta prior

Model

$$x_1,...,x_n|\theta \stackrel{iid}{\sim} \mathrm{Bern}(\theta)$$

Prior

$$\theta \sim \text{Beta}(\alpha, \beta)$$

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 \le \theta \le 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$
$$\propto \theta^{s}(1-\theta)^{f} \cdot \theta^{\alpha-1}(1-\theta)^{\beta-1}$$
$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

Posterior is proportional to the Beta $(\alpha + s, \beta + f)$ density.

$$X \sim \text{Beta}(\alpha, \beta)$$
 for $X \in [0, 1]$.

$$p(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

$$\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta}$$

$$\mathbb{V}(X) = \frac{\alpha + \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

 $\Gamma(\alpha)$ is the Gamma function.

Bayesian updating in Bernoulli trials

Conjugate analysis - Bernoulli model

Model: $X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Bern}(\theta)$

Prior: $\theta \sim \mathrm{Beta}(\alpha, \beta)$

Posterior: $\theta | x_1, \dots, x_n \sim \text{Beta}(\alpha + s, \beta + f)$

Spam data (n=10) - Prior is influential

Spam data (n=100) - Prior is less influential

Spam data (n=4601) - Prior does not matter

Normal data, known variance - uniform prior

Model

$$x_1,...,x_n|\theta,\sigma^2 \stackrel{iid}{\sim} N(\theta,\sigma^2).$$

Prior

$$p(\theta) \propto c$$
 (a constant)

Likelihood

$$p(x_1, ..., x_n | \theta, \sigma^2) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2} (x_i - \theta)^2\right]$$

$$\propto \exp\left[-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right].$$

Posterior

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

Normal data, known variance - normal prior

Prior

$$heta \sim \mathit{N}(\mu_0, au_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$
$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

$$\mu_{\mathbf{n}} = \mathbf{w}\bar{\mathbf{x}} + (1 - \mathbf{w})\mu_0,$$

and

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

Bayesian updating for Normal data

Conjugate analysis - Gaussian model, known variance

Model: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2), \sigma^2 \text{ known}$

Prior: $\theta \sim N(\mu_0, \tau_0^2)$

Posterior: $\theta | x_1, \dots, x_n \sim N(\mu_n, \tau_n^2)$

Posterior precision: $\frac{1}{\tau_2^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_2^2}$

Posterior mean: $\mu_n=w\bar{\mathbf{x}}+(1-w)\mu_0$ Posterior weight: $w=\frac{n/\sigma^2}{n/\sigma^2+1/\tau_0^2}$

Normal data, known variance - normal prior

Posterior precision = Data precision + Prior precision

Posterior mean =

 $\frac{\text{Data precision}}{\text{Posterior precision}} \big(\text{Data mean} \big) \, + \, \frac{\text{Prior precision}}{\text{Posterior precision}} \big(\text{Prior mean} \big)$

- **Problem**: My internet provider promises an average download speed of at least 20 Mbit/sec. Are they lying?
- **Data**: x = (15.77, 20.5, 8.26, 14.37, 21.09) Mbit/sec.
- **Model**: $X_1,...,X_5 \sim N(\theta,\sigma^2)$.
- Assume $\sigma = 5$ (measurements can vary $\pm 10 \text{MBit}$ with 95% probability)
- $\blacksquare \text{ My prior: } \theta \sim \textit{N}(20, 5^2).$

Internet speed n=1

Internet speed n=2

Internet speed n=5

Bayesian updating

Bayes respects the Likelihood Principle

Bernoulli trials with order:

$$x_1 = 1, x_2 = 0, ..., x_4 = 1, ..., x_n = 1$$

$$p(\mathbf{x}|\theta) = \theta^{s}(1 - \theta)^{f}$$

Bernoulli trials without order. *n* fixed, *s* random.

$$p(s|\theta) = \binom{n}{s} \theta^{s} (1-\theta)^{f}$$

Negative binomial sampling: sample until you get s successes. s fixed, n random.

$$p(n|\theta) = \binom{n-1}{s-1} \theta^{s} (1-\theta)^{f}$$

- The **posterior distribution is the same** in all three cases.
- Bayesian inference respects the likelihood principle.