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Course overview

■ Course webpage. Course syllabus.

■ Modes of teaching:
▶ Lectures (Mattias Villani)
▶ Mathematical exercises (Oskar Gustafsson)
▶ Computer labs to work on Home Assignment

(Oskar Gustafsson, Akram Mahmoudi and Valentin Zulj)

■ High-level contents:
▶ The Bayesics, single- and multiparameter models
▶ Regression and Classification models
▶ Advanced models and Posterior Approximation
▶ Simulation-based inference and Probabilistic programming

■ Examination
▶ Home assignment, Part A and B.
▶ Exam: Pen and paper + Computer (using R).

Polished home assignment can be uploaded as pdf.
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Lecture overview

■ The likelihood function

■ Bayesian inference

■ Bernoulli model

■ The Normal model with known variance
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Likelihood function - Bernoulli trials
■ Bernoulli trials:

X1, ...,Xn|θ
iid∼ Bern(θ).

■ Likelihood from s =
∑n

i=1 xi successes and f = n − s failures.

p(x1, ..., xn|θ) = p(x1|θ) · · · p(xn|θ) = θs(1− θ)f

■ Maximum likelihood estimator θ̂ maximizes p(x1, ..., xn|θ).

■ Given the data x1, ..., xn, plot p(x1, ..., xn|θ) as a function of θ.
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The likelihood function

■ Say it out loud:
The likelihood function is
the probability of the observed data
considered as a function of the parameter.

■ The symbol p(x1, ..., xn|θ) plays two different roles:

■ Probability distribution for the data.
▶ The data x = (x1, ..., xn) are random.
▶ θ is fixed.

■ Likelihood function for the parameter
▶ The data x = (x1, ..., xn) are fixed.
▶ p(x1, ..., xn|θ) is function of θ.
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Probabilities from the likelihood?
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Uncertainty and subjective probability

■ Pr(θ < 0.6|data) only makes sense if θ is random.
■ But θ may be a fixed natural constant?
■ Bayesian: doesn’t matter if θ is fixed or random.
■ Do You know the value of θ or not?
■ p(θ) reflects Your knowledge/uncertainty about θ.
■ Subjective probability.
■ The statement Pr(10th decimal of π = 9) = 0.1 makes sense.
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Bayesian learning

■ Bayesian learning about a model parameter θ:
▶ state your prior knowledge as a probability distribution p(θ).
▶ collect data and form the likelihood function p(Data|θ).
▶ combine prior p(θ) and data information p(Data|θ).

■ How to combine the two sources of information?

Bayes’ theorem
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Learning from data - Bayes’ theorem

■ How to update from prior p(θ) to posterior p(θ|Data)?
■ Bayes’ theorem for events A and B

p(A|B) = p(B|A)p(A)
p(B) .

■ Bayes’ Theorem for a model parameter θ

p(θ|Data) = p(Data|θ)p(θ)
p(Data) .

■ It is the prior p(θ) that takes us from p(Data|θ) to p(θ|Data).

■ A probability distribution for θ is extremely useful.
Predictions. Decision making.

■ No prior - no posterior - no useful inferences - no fun.
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Testing for Covid COV ID BAYES'  THEOREM

■ A = {Covid}, B ={Positive home test}.
■ Sensitivity: 96.77%. This is p(B|A) = 0.9677.
■ Specificity: 99.20%. This is p(Bc|Ac) = 0.9920.
■ Prevalence: 5%. This is p(A) = 0.05.
■ Probability of being sick when test is positive:

p(A|B) = p(B|A)p(A)
p(B) =

p(B|A)p(A)
p(B|A)p(A) + p(B|Ac)p(Ac)

≈ 0.864.

■ Probably some symptoms. So maybe Pr(A) = 0.7. Then

p(A|B) = 0.9965.

■ Morale: If you want p(A|B) then p(B|A) does not tell the
whole story. The prior probability p(A) is also very important.
“You can’t enjoy the Bayesian omelette

without breaking the Bayesian eggs”
Leonard Jimmie Savage
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The normalizing constant is not important

■ Bayes theorem

p(θ|Data) = p(Data|θ)p(θ)
p(Data) =

p(Data|θ)p(θ)∫
θ p(Data|θ)p(θ)dθ .

■ Integral p(Data) =
∫
θ p(Data|θ)p(θ)dθ can make you cry.

■ p(Data) is only a constant to ensure that
∫

p(θ|Data) = 1.
■ Example: x ∼ N(µ, σ2)

p(x) = (2πσ2)−1/2 exp
[
− 1

2σ2
(x − µ)2

]
.

■ We may write

p(x)∝ exp
[
− 1

2σ2
(x − µ)2

]
.
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Great theorems make great tattoos
■ All you need to know:

p(θ|Data) ∝ p(Data|θ)p(θ)
or

Posterior ∝ Likelihood · Prior
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Bernoulli trials - Beta prior

■ Model
x1, ..., xn|θ

iid∼ Bern(θ)

■ Prior
θ ∼ Beta(α, β)

p(θ) = Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 for 0 ≤ θ ≤ 1.

■ Posterior

p(θ|x1, ..., xn) ∝ p(x1, ..., xn|θ)p(θ)
∝ θs(1− θ)f · θα−1(1− θ)β−1

= θs+α−1(1− θ)f+β−1.

■ Posterior is proportional to the Beta(α+ s, β + f) density.
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Beta distribution D ISTR IBUT ION BETA

X ∼ Beta(α, β) for X ∈ [0, 1].

p(x) = xα−1(1− x)β−1

B(α, β)

E(X) = α

α+ β

V(X) = αβ

(α+ β)2(α+ β + 1)

B(α, β) = Γ(α)Γ(β)
Γ(α+β)

Γ(α) is the Gamma function.
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Bayesian updating in Bernoulli trials

Conjugate analysis - Bernoulli model
Model: X1, . . . ,Xn

iid∼ Bern(θ)
Prior: θ ∼ Beta(α, β)
Posterior: θ|x1, . . . , xn ∼ Beta(α+ s, β + f)
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Spam data (n=10) - Prior is influential
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Spam data (n=100) - Prior is less influential
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Spam data (n=4601) - Prior does not matter
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Normal data, known variance - uniform prior

■ Model
x1, ..., xn|θ, σ2 iid∼ N(θ, σ2).

■ Prior
p(θ) ∝ c (a constant)

■ Likelihood

p(x1, ..., xn|θ, σ2) = Πn
i=1(2πσ

2)−1/2 exp
[
− 1

2σ2
(xi − θ)2

]
∝ exp

[
− 1

2(σ2/n)(θ − x̄)2
]
.

■ Posterior
θ|x1, ..., xn ∼ N(x̄, σ2/n)
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Normal data, known variance - normal prior

■ Prior
θ ∼ N(µ0, τ

2
0 )

■ Posterior

p(θ|x1, ..., xn) ∝ p(x1, ..., xn|θ, σ2)p(θ)
∝ N(θ|µn, τ

2
n ),

where
1

τ2n
=

n
σ2

+
1

τ20
,

µn = wx̄ + (1− w)µ0,

and
w =

n
σ2

n
σ2 + 1

τ20

.
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Bayesian updating for Normal data

Conjugate analysis - Gaussian model, known variance
Model: X1, . . . ,Xn

iid∼ N(θ, σ2), σ2 known
Prior: θ ∼ N(µ0, τ

2
0 )

Posterior: θ|x1, . . . , xn ∼ N
(
µn, τ2n

)
Posterior precision: 1

τ2n
= n

σ2 + 1
τ20

Posterior mean: µn = wx̄ + (1− w)µ0

Posterior weight: w = n/σ2

n/σ2+1/τ20
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Normal data, known variance - normal prior

Posterior precision = Data precision + Prior precision

Posterior mean =
Data precision

Posterior precision(Data mean) + Prior precision
Posterior precision(Prior mean)
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Internet speed INTERNET  SPEED PRIOR > POST

■ Problem: My internet provider promises an average download
speed of at least 20 Mbit/sec. Are they lying?

■ Data: x = (15.77, 20.5, 8.26, 14.37, 21.09) Mbit/sec.

■ Model: X1, ...,X5 ∼ N(θ, σ2).

■ Assume σ = 5 (measurements can vary ±10MBit with 95%
probability)

■ My prior: θ ∼ N(20, 52).
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Internet speed n=1
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Internet speed n=2
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Internet speed n=5
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Bayesian updating
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Bayes respects the Likelihood Principle

■ Bernoulli trials with order:
x1 = 1, x2 = 0, ..., x4 = 1, ..., xn = 1

p(x|θ) = θs(1− θ)f

■ Bernoulli trials without order. n fixed, s random.

p(s|θ) =
(

n
s

)
θs(1− θ)f

■ Negative binomial sampling: sample until you get s
successes. s fixed, n random.

p(n|θ) =
(

n − 1

s − 1

)
θs(1− θ)f

■ The posterior distribution is the same in all three cases.
■ Bayesian inference respects the likelihood principle.
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