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Overview

■ Probabilistic programming with Stan

■ Bayesian model comparison

■ Marginal likelihood

■ Model averaging
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Probabilistic programming with Stan

■ See this Quarto notebook for an introduction to Stan and the
loo package for model evaluation using iid Normal model as
the running example.
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https://mattiasvillani.com/BayesLearnCourse/misc/intro_stan.html


Bayesian model comparison

■ Posterior model probabilities

Pr(Mk|y)︸ ︷︷ ︸
posterior model prob.

∝ p(y|Mk)︸ ︷︷ ︸
marginal likelihood

· Pr(Mk)︸ ︷︷ ︸
prior model prob.

■ The marginal likelihood for model Mk with parameters θk

p(y|Mk)︸ ︷︷ ︸ =
∫

p(y|θk,Mk)p(θk|Mk)dθk.

■ θk is ’removed’ by the averaging wrt prior. Priors matter!

■ The Bayes factor

B12(y) =
p(y|M1)

p(y|M2)
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Internet speed data - prior predictive density

■ See this interactive notebook for an example with the iid
normal model with known variance.
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https://observablehq.com/@mattiasvillani/bayesian-test-mean-normal-pop


Laplace approximation

■ Taylor approximation of the log posterior around the posterior
mode θ̃ gives:

p(y|θ)p(θ) ≈ p(y|θ̃)p(θ̂) exp
[
−1

2
Jy(θ̃)(θ − θ̃)2

]
= p(y|θ̃)p(θ̃)(2π)p/2

∣∣∣J−1
y (θ̃)

∣∣∣1/2
× (2π)−p/2

∣∣∣J−1
y (θ̃)

∣∣∣−1/2
exp

[
−1

2
Jy(θ̃)(θ − θ̃)2

]
︸ ︷︷ ︸

multivariate normal density

■ So integrating both sides with respect to θ gives

p(y) =
∫

p(y|θ)p(θ)dθ = p(y|θ̃)p(θ̃)(2π)p/2
∣∣∣J−1

y (θ̃)
∣∣∣1/2
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Laplace approximation

■ The Laplace approximation of the log marginal likelihood:

ln p̂(y) ≈ ln p(y|θ̃) + lnp(θ̃) + 1

2
ln

∣∣∣J−1
y (θ̃)

∣∣∣+ p
2

ln(2π),

where p is the number of unrestricted parameters.

■ θ̂ and Jy(θ̃) can be obtained with optimization/autodiff.
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Model averaging

■ Two models M1 and M2, each giving a predictive density:
▶ Predictive density Model M1: p1(ỹ|y)
▶ Predictive density Model M2: p2(ỹ|y)

■ Instead of selecting one model, we can marginalize over the
models using the posterior model probabilities Pr(Mk|y) in
model averaging:

p(ỹ|y) = Pr(M1|y)p1(ỹ|y) + Pr(M2|y)p2(ỹ|y)

■ Predictive distribution includes three sources of uncertainty:
▶ Future errors/disturbances (e.g. the ε’s in a regression)
▶ Parameter uncertainty (the predictive distribution has the

parameters integrated out by their posteriors)
▶ Model uncertainty (by model averaging)
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