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https://fosstodon.org/@matvil
https://github.com/mattiasvillani

Overview

B Probabilistic programming with Stan
B Bayesian model comparison

B Marginal likelihood

B Model averaging
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Probabilistic programming with Stan

l See this Quarto notebook for an introduction to Stan and the
loo package for model evaluation using iid Normal model as
the running example.
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https://mattiasvillani.com/BayesLearnCourse/misc/intro_stan.html

Bayesian model comparison

B Posterior model probabilities

Pr(Mdy) oo p(yIMy) - Pr(M)
———
posterior model prob. marginal likelihood prior model prob.

B The marginal likelihood for model My with parameters 6

pyIMy) = / P(Y605: Mi) p(01 My .
——

B 0, is 'removed’ by the averaging wrt prior. Priors matter!

B The Bayes factor

_ ply|My)
Bu2Y) = L)
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Internet speed data - prior predictive density
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[l See this interactive notebook for an example with the iid
normal model with known variance.



https://observablehq.com/@mattiasvillani/bayesian-test-mean-normal-pop

Taylor approximation of the log posterior around the posterior
mode 0 gives:

p(¥16)p(8) ~ p(y13)p(6) exp [—Uy(é)(e - éﬂ
= ply D))" |1 0)|
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x (2m) P/ ‘ 5 (é)‘ exp [—;Jy(é)(e - 5)2]

multivariate normal density
So integrating both sides with respect to 6 gives

p(y) = / p(y|0)p(6)dd = p(y|d)p(9)(2r) p/2 ‘J_ ‘1/2
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Laplace approximation

B The Laplace approximation of the log marginal likelihood:
. = ~ 1 —1/7
In p(y) =~ In p(y|0) + Inp(8) + 5 In ’Jy 1(9)‘ + gln(27r),
where p is the number of unrestricted parameters.

M 6 and Jy,(f) can be obtained with optimization/autodiff.
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Model averaging

B Two models M; and My, each giving a predictive density:

» Predictive density Model M;: p; (¥]y)
» Predictive density Model Ms: pa(¥]y)

I Instead of selecting one model, we can marginalize over the
models using the posterior model probabilities Pr(My|y) in
model averaging:

p(Yly) = Pr(Miy)p1(¥y) + Pr(Maly)p2(¥y)

H Predictive distribution includes three sources of uncertainty:

» Future errors/disturbances (e.g. the €'s in a regression)

» Parameter uncertainty (the predictive distribution has the
parameters integrated out by their posteriors)

» Model uncertainty (by model averaging)
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