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Overview

■ Wait, what did we actually do?
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Bayesics

■ Subjective probability
■ Bayesian Learning: Bayes theorem

p(θ|x) = p(x|θ)p(θ)
p(x) ∝ p(x|θ)p(θ)

■ The proportional constant is actually the marginal likelihood

p(x) =
∫

p(x|θ)p(θ)dθ

used for model comparison.
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Simple models - conjugate priors

■ iid Bernoulli model - Beta prior
■ iid Poisson model - Gamma prior
■ iid Exponential model - Gamma prior
■ iid Normal known variance - Normal prior
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Multi-parameter models

■ Marginalization

p(θ1|x) =
∫

p(θ1, θ2|x)dθ2

■ iid normal with unknown variance N(θ, σ2). Marginal
posterior for θ is student-t

θ|x ∼ t
(
µn,

σ2
n

κn
, νn

)
■ Multinomial model - Dirichlet prior
■ Dirichlet distribution on unit simplex

∑K
k=1 θk = 1.
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Linear Gaussian regression
■ Linear regression

yi = x⊤i β + εi, εi
iid∼ N(0, σ2)

■ Conjugate prior
β|σ2 ∼ N

(
µ0, σ

2Ω−1
0

)
σ2 ∼ Inv − χ2

(
ν0, σ

2
0

)
■ Posterior

β|σ2, y ∼ N
(
µn, σ

2Ω−1
n

)
σ2|y ∼ Inv−χ2

(
νn, σ

2
n
)

■ L2-Regularization prior (Ridge)

β|σ2 ∼ N
(
0,

σ2

λ
Ip

)
■ L1-Regularization prior (Lasso)

β|σ2 ∼ Laplace
(
0,

σ2

λ
Ip

)
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Logistic regression and Beyond
■ Logistic regression

Pr(yi = 1|xi) =
ex⊤i β

1 + ex⊤i β

■ Posterior distribution p(β|y,X) is intractable. Solutions:
▶ Normal approximation
▶ Posterior sampling using MH/HMC

■ Linear Gaussian regression is modeling a conditional density

yi|xi
ind∼ N(µi, σ

2) where µi = x⊤i β
■ Paves the way for Poisson regression:

yi|xi
ind∼ Pois(µi) where µi = ex⊤i β

■ Exponential regression

yi|xi
ind∼ Expon(θi) where θi =

1

ex⊤i β

so that E(yi|xi) = µi = ex⊤i β.
7 / 13



Priors

■ Expert elicitation

■ Other data sources

■ Non-informative priors (prior sample size). Bernoulli model:

θ|x ∼ Beta(α+ s, β + f)

■ Jeffreys’ prior p(θ) = |I(θ)|1/2

■ Hierarchical priors. L2-regularization

p(β, σ2, λ) = p(β|σ2λ)p(σ2)p(λ)

■ Regularization and smoothness priors
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Prediction
■ (Posterior) predictive distribution for iid data:

p(ỹ|y) =
∫
θ

p(ỹ|θ)p(θ|y)dθ

▶ p(ỹ|θ) is the model density for a new observation ỹ given θ

▶ p(θ|y) is the posterior density for θ given the training data y

■ With no training data: the prior predictive distribution

p(ỹ) =
∫
θ

p(ỹ|θ)p(θ)dθ

where we integrate of the parameters using the prior p(θ).
■ Use prior predictive density to set the prior hyperparameters

when the expert expresses prior beliefs about observable data:
▶ E(ỹ)
▶ Pr(ỹ > c)

■ Interactive example with Gamma prior for Poisson model.
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Decisions

■ Need to make a decision/action a ∈ A when state of
nature θ is partially unknown.

■ The utility function describes the consequence of taking
action a when state of nature is θ

U(a,θ)

■ The utility function is subjective (also for non-Bayesians) and
is determined by the decision maker.

■ Bayesian theory gives a single universal decision rule: choose
the action that maximizes (posterior) expected utility:

EU(a) =
∫

U(a,θ)p(θ|y)dθ

where y is some training data.
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Posterior approximation

■ Three ways to approximate the posterior:
▶ Normal approximation

▶ Posterior sampling (Gibbs, MH, HMC)
▶ Numerical integration

■ Normal approximation is fast, but is approximate unless we
have a lot of data (infinite in theory).

■ Posterior sampling will converge to true posterior if simulated
long enough, but is approximate in finite time.

■ Numerical integration is only a good option when the number
of parameters is small.
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Model evaluation and comparison

■ Three main ways to compare models
▶ Posterior model probabilities (marginal likelihood)
▶ Log Predictive Density Score (LPDS/elpd)
▶ Leave-one-out (LOO) LPDS/elpd

■ Evaluate the predictive density performance on test data

p(ytest|ytrain) =

∫
p(ytest|θ, ytrain)p(θ|ytrain)dθ

▶ test data ytest

▶ posterior p(θ|ytrain) based on some training data.

■ Often evaluated on the log scale: log p(ytest|ytrain).

■ Parameter uncertainty is included in the model comparison
by integrating with respect to the posterior p(θ|ytrain).
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Model evaluation and comparison

■ Marginal likelihood:
▶ no ytrain and ytest is all the data.
▶ Sensitive to the prior on the parameters p(θ).

■ Log Predictive Density Score:
▶ ytrain and ytest is some partition of the data.
▶ K-fold cross-validation.

■ Leave-one-out (LOO)
▶ ytest = yi and ytrain = y−i (all data except obs i)
▶ n-fold cross-validation.
▶ Time-consuming: posterior sampling from n posteriors

p(θ|y−i) for i = 1, . . . , n

▶ The loo package uses a importance sampling trick for speed.
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