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Lecture overview

B Markov Chain Monte Carlo

B Metropolis-Hastings

BH MCMC - efficiency, burn-in and convergence
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Stochastic process

W Let S ={1,2,...,K} be a finite set of states.

» Weather: S = {sunny, rain}.
» School grades: S = {A, B, C,D, E, F}

B Stochastic process: collection of random variables
X1, X2, X3, ..., often over time.

[l A time series with categories.
B Weather: X; = sunny, Xy = sunny, X3 = rain, X; = sunny.

B School grades: X1 =C, Xo=C, Xs=B, X4 =A, Xs = B.
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Markov chains

B Markov chain: probability distribution of tomorrow’s state
Xer1 depends (only) on today's state X

pij = Pr(Xer1 = jIX: = i)

pa1 = 0.7
Rain
2
pun =09 p2 = 0.3
p12 =0.1

I Transition matrix for weather example

p— < P11 P12 ) _ < 09 0.1 >
P21 P22 0.7 03
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Markov chains - Grades example

paa =03

A B C D E F
0.3 03 02 0.1 0.07 0.03

P=

MmO NW>
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Stationary distribution

B h-step transition probabilities

(h . \

Py = Pr(Xer, = jiXe =)

B h-step transition matrix by matrix power
ph — ph

B Unique equilbrium distribution 7w = (7q, ..., mx) if chain is
ergodic:
» irreducible (possible to get to any state from any state)

» aperiodic (does not get stuck in predictable cycles)
> positive recurrent (expected time of returning is finite)

B Limiting long-run distribution as h — oo

™ T T s Tk

Ph ™ T T o Tk
— e

™ T T s Tk
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Stationary distribution, cont.

B Limiting long-run distribution as h — oo

™ T T v Tk

™ T T o Tk
P — =

™ T T v Tk

B Stationary distribution
w=7P

M Draw starting point using 7. All future states of the Markov
Chain will have distribution 7.

B Weather example:
09 0.1 0.84 0.16
P= ( 0.3 0.7 ) P = ( 042 0.58 )
P _ ( 0.77 0.23 ) ploo _ < 0.75 0.25 )

0.69 0.31 0.75 0.25
7 = (0.75,0.25)
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The basic MCMC idea

B Aim: simulate from a discrete distribution p(x).

B MCMC: simulate a Markov Chain with a stationary
distribution that is exactly p(x).

B How to set up the transition matrix P? Metropolis-Hastings!

States
cumulative prop, sunny
cumulative prop, rain

@ Can be extended to continuous random variables.
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Rejection sampling

——Target density
T 4

02

T ——T(15,
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Random walk Metropolis algorithm

B Initialize 8©) and iterate for i = 1,2,...
Sample proposal: 8]0~ ~ N(B(i_l), c- 2)

Compute the acceptance probability

o = min (1 p(o—*|Y)>
W CAR

Draw u ~ Uniform(0, 1)
If u<aset 0(’:) =0"  (accept and move)
If u> a set 89 =00~ (reject and stay)
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Interactive - Random Walk Metropolis

49X,
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https://observablehq.com/@mattiasvillani/random-walk-metropolis

Proportional form of posterior is enough!

B Assumption: we can compute p(@|y) for any 6.
[l Proportionality constants in posterior cancel out in

o = min (1 &> .
"p(6 Vy)

B Proportional form of posterior is enough!

p(y|6) p(6)

p (yIO(H)) p (9("1)>

a=min | 1,
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Random walk Metropolis - choosing a proposal

B Common choices of 3 in proposal N(O(i_l), c- E):
» X = I (proposes 'off the cigar’)

> X = Jy_l(é) (propose 'along the cigar’)
» Adaptive. Start with 3 = I. Update ¥ from initial run.

I Set ¢ so average acceptance probability is 25-30%.

B Good proposal:
» Easy to sample
» Easy to compute o
» Proposals should take reasonably large steps in @-space
>

Proposals should not be reject too often.
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The Metropolis-Hastings algorithm

Il Generalization when the proposal density is not symmetric.

W Initialize 6(*) and iterate for i = 1,2, ...
Sample proposal: 8 ~ g (.|9("*1))

Compute the acceptance probability

we'ly) (0701
p(0" Vly) g (0*|9<"—1))

a=min | 1,

Draw u ~ Uniform(0, 1)

If u<aset @) =0* (accept and move)
If u> aset 8 =00~ (reject and stay)
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The independence sampler

B Independence sampler: g <0*|0(i_1)> =q(6%).
B Proposal is independent of previous draw.

W Example: a multivariate-t distribution (we want heavy tails)
0* ~ t(o,Jy—l(a),u) :

where @ and J, () are computed by numerical optimization.
[l Can be very efficient, but has a tendency to get stuck.

W Make sure that g (6*) has heavier tails than p(8]y).
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The efficiency of MCMC

B How efficient is MCMC compared to iid sampling?
mIF oM 9@ 9 are iid with variance 2, then
2
i
0)=—.
Var(0) -

W Autocorrelated V) 9 . 9(M generated by MCMC

Var(f) = <1 +22pk>

where p, = Corr(8), 9(+K)) is the autocorrelation at lag k.
B Inefficiency factor (for large enough K)

K
IF=1+2> pk
k=1
Il Effective sample size from MCMC
E —
55 = IF
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Burn-in and convergence

B How long burn-in?

B How long to sample after burn-in?

B Convergence diagnostics

» Raw plots of simulated sequences (MCMC trajectories)
» Cumulative estimates plots

» Repeated runs with different initial values

» Potential scale reduction factor, R.

Posterior mean Posterior stdev Posterior tail probabilty
o S ame © = P
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17 /18



Burn-in and convergence

nSim = 500
L A R e s |
<19 9 1 11 21
i}
nSim = 1500
L A e e e |
<19 9 1 11 21
i}

nSim = 1000

nSim = 2000
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