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Lecture overview

■ Markov Chain Monte Carlo

■ Metropolis-Hastings

■ MCMC - efficiency, burn-in and convergence
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Stochastic process

■ Let S = {1, 2, . . . ,K} be a finite set of states.
▶ Weather: S = {sunny, rain}.
▶ School grades: S = {A,B,C,D,E,F}

■ Stochastic process: collection of random variables
X1,X2,X3, . . ., often over time.

■ A time series with categories.

■ Weather: X1 = sunny, X2 = sunny, X3 = rain, X4 = sunny.

■ School grades: X1 = C, X2 = C, X3 = B, X4 = A, X5 = B.
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Markov chains

■ Markov chain: probability distribution of tomorrow’s state
Xt+1 depends (only) on today’s state Xt:

pij = Pr(Xt+1 = j|Xt = i)

Sunny
1

Rain
2

■ Transition matrix for weather example

P =

(
p11 p12
p21 p22

)
=

(
0.9 0.1
0.7 0.3

)
4 / 18



Markov chains - Grades example
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
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Stationary distribution
■ h-step transition probabilities

p(h)ij = Pr(Xt+h = j|Xt = i)
■ h-step transition matrix by matrix power

P(h) = Ph

■ Unique equilbrium distribution π = (π1, ..., πk) if chain is
ergodic:
▶ irreducible (possible to get to any state from any state)
▶ aperiodic (does not get stuck in predictable cycles)
▶ positive recurrent (expected time of returning is finite)

■ Limiting long-run distribution as h → ∞

Ph →


π
π
...
π

 =


π1 π2 · · · πk
π1 π2 · · · πk
... ... ...
π1 π2 · · · πk


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Stationary distribution, cont.
■ Limiting long-run distribution as h → ∞

Ph →


π
π
...
π

 =


π1 π2 · · · πk
π1 π2 · · · πk
...

...
...

π1 π2 · · · πk


■ Stationary distribution

π = πP
■ Draw starting point using π. All future states of the Markov

Chain will have distribution π.
■ Weather example:

P =

(
0.9 0.1
0.3 0.7

)
,P2 =

(
0.84 0.16
0.42 0.58

)
P5 =

(
0.77 0.23
0.69 0.31

)
,P100 =

(
0.75 0.25
0.75 0.25

)
π = (0.75, 0.25)
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The basic MCMC idea

■ Aim: simulate from a discrete distribution p(x).

■ MCMC: simulate a Markov Chain with a stationary
distribution that is exactly p(x).

■ How to set up the transition matrix P? Metropolis-Hastings!

■ Can be extended to continuous random variables.
8 / 18



Rejection sampling
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Random walk Metropolis algorithm

■ Initialize θ(0) and iterate for i = 1, 2, ...

1 Sample proposal: θ⋆|θ(i−1) ∼ N
(
θ(i−1), c ·Σ

)
2 Compute the acceptance probability

α = min
(
1,

p(θ⋆|y)
p(θ(i−1)|y)

)

3 Draw u ∼ Uniform(0, 1)

If u ≤ α set θ(i) = θ⋆ (accept and move)
If u > α set θ(i) = θ(i−1) (reject and stay)
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Interactive - Random Walk Metropolis
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https://observablehq.com/@mattiasvillani/random-walk-metropolis


Proportional form of posterior is enough!

■ Assumption: we can compute p(θ|y) for any θ.

■ Proportionality constants in posterior cancel out in

α = min
(
1,

p(θ⋆|y)
p(θ(i−1)|y)

)
.

■ Proportional form of posterior is enough!

α = min

1,
p (y|θ⋆) p (θ⋆)

p
(

y|θ(i−1)
)

p
(
θ(i−1)

)

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Random walk Metropolis - choosing a proposal

■ Common choices of Σ in proposal N
(
θ(i−1), c ·Σ

)
:

▶ Σ = I (proposes ’off the cigar’)
▶ Σ = J−1

y (θ̃) (propose ’along the cigar’)
▶ Adaptive. Start with Σ = I. Update Σ from initial run.

■ Set c so average acceptance probability is 25-30%.

■ Good proposal:
▶ Easy to sample

▶ Easy to compute α

▶ Proposals should take reasonably large steps in θ-space
▶ Proposals should not be reject too often.
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The Metropolis-Hastings algorithm

■ Generalization when the proposal density is not symmetric.

■ Initialize θ(0) and iterate for i = 1, 2, ...

1 Sample proposal: θ⋆ ∼ q
(
·|θ(i−1)

)
2 Compute the acceptance probability

α = min

1,
p(θ⋆|y)

p(θ(i−1)|y)

q
(
θ(i−1)|θ⋆

)
q
(
θ⋆|θ(i−1)

)


3 Draw u ∼ Uniform(0, 1)

If u ≤ α set θ(i) = θ⋆ (accept and move)
If u > α set θ(i) = θ(i−1) (reject and stay)
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The independence sampler

■ Independence sampler: q
(
θ⋆|θ(i−1)

)
= q (θ⋆).

■ Proposal is independent of previous draw.

■ Example: a multivariate-t distribution (we want heavy tails)

θ⋆ ∼ t
(
θ̃, J−1

y (θ̃), ν
)
,

where θ̃ and Jy(θ̃) are computed by numerical optimization.

■ Can be very efficient, but has a tendency to get stuck.

■ Make sure that q (θ⋆) has heavier tails than p(θ|y).
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The efficiency of MCMC
■ How efficient is MCMC compared to iid sampling?
■ If θ(1), θ(2), ..., θ(m) are iid with variance σ2, then

Var(θ̄) = σ2

m .

■ Autocorrelated θ(1), θ(2), ..., θ(m) generated by MCMC

Var(θ̄) = σ2

m

(
1 + 2

∞∑
k=1

ρk

)
where ρk = Corr(θ(i), θ(i+k)) is the autocorrelation at lag k.

■ Inefficiency factor (for large enough K)

IF = 1 + 2

K∑
k=1

ρk

■ Effective sample size from MCMC

ESS =
m
IF
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Burn-in and convergence

■ How long burn-in?

■ How long to sample after burn-in?

■ Convergence diagnostics
▶ Raw plots of simulated sequences (MCMC trajectories)
▶ Cumulative estimates plots
▶ Repeated runs with different initial values
▶ Potential scale reduction factor, R.

17 / 18



Burn-in and convergence
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