Interactive

This page contains interactive widgets for the book.

Chapter 1 - The Bayesics

The Bernoulli distribution The Bernoulli distribution
Maximum likelihood iid Bernoulli data The Bernoulli distribution
Bayes’ theorem for events The Bernoulli distribution

Chapter 2 - One-parameter models

Beta distribution The Bernoulli distribution
Bayesian inference for iid Bernoulli data The Bernoulli distribution
Normal distribution The Bernoulli distribution
Bayesian inference for Gaussian iid data with known variance The Bernoulli distribution
Poisson distribution The Bernoulli distribution
Gamma distribution The Bernoulli distribution
Bayesian inference for iid Poisson counts The Bernoulli distribution
Exponential distribution The Bernoulli distribution
Bayesian inference for Exponential iid data The Bernoulli distribution

Chapter 3 - Multi-parameter models

Multinomial distribution The Bernoulli distribution
Dirichlet distribution The Bernoulli distribution
Bayesian inference for multinomial data The Bernoulli distribution

Chapter 4 - Priors

Chapter 5 - Regression

Chapter 6 - Prediction and Decision making

Chapter 7 - Normal posterior approximation

Chapter 8 - Classification

Chapter 9 - Gibbs sampling

Chapter 10 - Markov Chain Monte Carlo simulation

Chapter 11 - Variational inference

Chapter 12 - Regularization

Chapter 13 - Mixture models and Bayesian nonparametrics

Chapter 14 - Model comparison and variable selection

Chapter 15 - Gaussian processes

Chapter 16 - Interaction models

Chapter 17 - Dynamic models and sequential inference

Kalman filter and parameter estimation Gibbs sampling from a multivariate normal - Julia